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The solution of the one-dimensional diffusion equation in the stationary problem of contact melting in the
presence of external forces has been proposed. As the external forces the influence of a nonuniform magnetic
field and the influence of electrotransfer have been considered. Expressions for the concentration distribution
of the components in a liquid interlayer and for the partial rates of contact melting have been obtained.

Contact melting can occur in the nonstationary diffusion mode [1–3], where the thickness of a liquid inter-
layer increases in proportion to the square root of the time of the process. In the stationary mode [4, 5], the liquid-in-
terlayer thickness remains constant owing to the pressure applied to the ends of samples while the newly formed
portions of the liquid are removed from the contact zone. When the thickness of the liquid interlayer attains the size
of about tenths of a micrometer, the process of transition of the atoms from the solid phase to a liquid one can have
an effect on the liquid phase–solid phase boundaries; then contact melting can occur in kinetic or mixed modes [6, 7].

It is of interest to consider the process of contact melting in the stationary mode in the field of external
forces without taking into account the hydrodynamic flow of a liquid. The electric current flowing through the liquid
interlayer and a nonuniform magnetic field can be used as the external forces. The actions of these forces will lead to
an additional flow of a substance (material flow) along with the diffusion flow. Under these conditions, the one-dimen-
sional problem of diffusion is reduced to solution of the equation
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with the boundary conditions

C (x) x=0 = C2 ,   C (x) x=δ = C3 . (2)

The solution of (1) with account for (2) will be sought in the form
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where A% and B% are the constants to be determined.
Satisfying boundary conditions (2), from expression (3) we find
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Having substituted (4) into (3), we obtain the final expression for the concentration distribution in the liquid
interlayer for two opposing directions of the external force:
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Expression (5) can be written in the following more convenient form:
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Expanding the exponents into a series and restricting ourselves to the first three terms of the expansion, we
obtain
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For small deviations of the contact-melting temperature from the eutectic temperature and when the exponents
are less than unity in modulus (in what follows it will be shown that this condition is fulfilled rather well), the error
of such an expansion does not exceed a fraction of a percent.

Expression (7) is the equation of a parabola which passes through the points (0, C2) and (δ, C3); the sign of
curvature (convexity or concavity) is determined by the direction of the external force.

When v → 0, which is equivalent to the absence of the external force, expression (5) becomes an indetermi-

nancy of the form 
0
0

; evaluating it according to l’Hospital’s rule, we obtain

C (x) = C2 + 
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δ
 x , (8)

which coincides with the analogous result of [4]. Precisely the same result is obtained from expression (7).
Disregarding flows into the solid phases 1 and 2, we can determine the partial rates of contact melting V1 and

V2 from the condition of balance of the substance at the phase boundaries:
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If the contact melting is carried out between solid solutions which are prepared in advance and are equilib-
rium at a given temperature, the concentrations C0 and C5 in formulas (9) and (10) take on the values of C1 and C4
corresponding to the equilibrium state diagram (Ci, i = 0, 1, 2, 3, 4, and 5 are the concentrations of the second com-
ponent).

In the presence of the external force, the expressions for the flows at the boundaries of the phases (x = 0)
and (x = δ) have the following form:
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Substituting (11) and (12) into (9) and (10) with account for (5), we obtain

V1
&

 = % 

N3v 



C3 − C2 exp 




% 

vδ

D
~








N1 (C2 − C0) 



1 − exp 




% 

vδ

D
~








 ,
(13)

V2
&

 = % 

N3v 



C3 − C2 exp 




% 

vδ

D
~








N1 (C5 − C3) 



1 − exp 




% 

vδ

D
~








 . (14)

When v → 0 expressions (13) and (14) become indeterminancies of the form 
0
0

; evaluating them according to
l’Hospital’s rule, we obtain
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The ratio of the partial rates of contact melting is a proportion in which the initial solid phases become a
melt as a result of the contact melting. It is of importance in many processes which are based on the phenomenon of
contact melting. As follows from (13) and (14), this ratio remains constant
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and does not depend on the magnitude of the external force, although the rates V1
& and V2

& themselves depend on the
magnitude of the external force that is directly related to v.

Let us find the total rates of contact melting for different directions of the external force. As is seen from
(13) and (14) (V− = V1

− + V2
− is the accelerating direction and V+ = V1

+ + V2
+ is the decelerating direction):
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It is easy to show that the differences are
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It is seen that if the external force, by acting on the diffusing particles, causes an additional flow of a substance, both
the total rate and the partial rate of contact melting are higher in the case where these flows coincide in direction than
in the case where these flows are opposing. As follows from (16)–(18), this difference grows linearly with increase in
v. It follows that, having measured this difference from the experiments conducted for different directions of the exter-
nal force, one can determine the structural characteristics of liquid solutions.

The analysis of formulas (13)–(15) makes it possible to draw the following important conclusion. Since for
the decelerating direction of the external force (or v) both the partial rates V1

+ and V2
+ and the total rate V+ of contact

melting must decrease with increase in v, for certain values of the external force and of the liquid-interlayer thickness
these rates will become equal to zero. From the physical considerations it follows that this state can set in when the
diffusion flow ID becomes equal to the flow occurring owing to the external force Iv. Further increase in v in modulus
can cause the rates V1

+ and V2
+ to change their directions. From this point on the process of crystallization begins under

the action of the external force. The value of the external force (or v0) for which such a transition occurs can roughly
be evaluated from formulas (13) and (14):
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All the conclusions drawn above from expressions (15)–(18) which have been obtained for the stationary
mode of contact melting hold true for the nonstationary diffusion mode as well, since, as is shown in [2], the rate of
contact melting in the stationary mode for a certain thickness of the liquid interlayer is equal to the instantaneous rate
of contact melting in the nonstationary diffusion mode for the same thickness of the liquid interlayer.

Let us elucidate now the physical meaning of the quantity v, i.e., the rate of transfer of a substance under the
action of the external force.

As is well known, the driving force causing the diffusive transfer of the substance of the ith component is the
gradient of chemical potential of this component and not the gradient of concentration, as follows from the first equa-
tion of Fick.

Under the action of the force Fi = −∂µ ⁄ ∂x, the atoms acquire the ordered motion with the velocity vi =
uiFi, causing the additional flow of the ith component equal to Ii = −CiuiFi. For ideal solutions, µi = µi

0 + kT ln Ci.
Consequently:

Ii = − CiuikT 
∂ ln Ci

∂x
 = − uikT 

∂Ci

∂x
 . (20)

From the comparison of (20) to the first equation of Fick, we obtain the expression

Di
∗
 = uikT   or   vi = 

Di
∗

kT
 Fi ,

(21)

which is known as the Einstein–Smoluchowski relation.
Formula (21) holds for isotopic diffusion and for diffusion in infinitely diluted solutions. In the case of real

solutions where each atom is surrounded by a varying number of neighbors of different sort, one must introduce the
activity ai instead of the concentration into the expression for the chemical potential (20). Then we will have

µi = µi
0
 + kT ln ai ,

(22)

where ai = γiCi.
Acting in the same manner as above, for Di and the transfer rate vi we obtain the following expressions:
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If the solutions are similar to ideal ones in properties, then

vi C 
Di

kT
 Fi . (24)

Let us first determine the average force Fi that acts on diffusing particles in the process of mass transfer in
contact melting and is caused by the gradient of chemical potential. To evaluate this force according to formula (24)
we must know the magnitude of the rate vi. The latter could be taken to be equal to the rate of contact melting. How-
ever the rate of contact melting can vary within wide limits as a function of the temperature of the experiment, the
state diagram, and the time of the process and is of little use for this purpose. In our opinion, the drift velocity of the
atoms in the process of diffusion is similar to the velocity of displacement of the liquid owing to the inequality of the
partial coefficients of diffusion. The magnitude of this velocity has been determined experimentally in contact melting
for a number of low-melting metallic systems in [8–10] according to the well-tested procedure. The numerical value
of this velocity depends slightly on the temperature and the time and is found in the interval (0.1–0.4) mm/h. Having
taken the average value of vi ≈ 0.25 mm ⁄ h ≈ 0.7⋅10−7 m/sec (for Di C 10−9 m2/sec, T = 500 K, and k = 1.38⋅10−23

J/K), from (24) we find Fi C 5⋅10−19 N.
Let us now evaluate Fi and vi in the case of action of a nonuniform magnetic field on the processes of dif-

fusion in contact melting.
In the presence of the nonuniform magnetic field, the magnitude of the external force acting on diffusing par-

ticles is equal to

Fi = λi 
dB

dx
 = 
χiHdB

NÀdx
 . (25)

Since the atoms of paramagnetic substances have nonzero magnetic moments in the nonuniform magnetic
field, they acquire the additional velocity of drift in the direction of the gradient of the field. The atoms of a diamag-
netic, conversely, do not have magnetic moments; however, being introduced into the magnetic field, they drift in the
direction opposite to the gradient of the field. Consequently, the force Fi and the rate vi of ordered transfer of the
components are related to the magnetic properties of the diffusing particles.

Let us now evaluate the magnitude of a possible effect of transfer and the conditions under which it can
occur. Since λef C 10−23 A⋅m2, by using special pole pieces we can obtain the value of dB ⁄ dx C 70 T/m with an FL-1
laboratory electromagnet. Then from (25) we will have Fi C 0.7⋅10−21 N (for the sake of comparison we indicate that
the value of this force is two orders of magnitude lower than the force of electrotransfer). The experiments on elec-
trotransfer have shown that the effect of transfer can be recorded well in a time of the experiment of about 10–20 h
if the drift velocity is no lower than 1⋅10−11 m/sec.

In the case of diffusion in the liquid contact interlayer in the nonuniform magnetic field, the value of this ve-
locity is C0.7⋅10−10 m/sec if we take Di C 1⋅10−9 m2/sec, T = 500 K, and Fi C 0.7⋅10−21 N.

Thus, the effect of transfer becomes quite recordable in the experiment with a duration of 10–20 h. To study
the transfer in the nonuniform magnetic field in contact melting one should select substances with large diffusion co-
efficient and effective magnetic moment and conduct experiments in strongly nonuniform magnetic fields. Knowledge
of the effective magnetic moment of the diffusing particles of an impurity would provide valuable data on the struc-
tural state of liquid solutions.

We consider the version of contact melting between paramagnetic A and diamagnetic B with the gradient of
the magnetic field along the diffusion zone. When the gradient of the field is directed from A to B the diffusion flows
and the flows of the components due to the nonuniform magnetic field coincide, while in the case of the opposite di-
rection of the gradient of the field these flows are opposing for both components. Consequently, the transfer rate in
the first case must be higher than in the second case, which is in agreement with the conclusions drawn from formulas
(16)–(18).
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In the case of electrotransfer in liquid solutions the diffusing ions are acted upon by the force [11]

Fi = e0Zi
∗
E . (26)

In the approximation of free electrons, as is shown in [12],

Zi
∗
 = Zi − nlσi .

(27)

The magnitude of the effective charge for the liquid solutions can be both more or less than zero, while the numerical
values can change from unity to tens.

The direction of the resultant force acting on the ion is determined by the sign of the left-hand side of ex-
pression (27). If this difference is more than zero, the resultant force is directed to the cathode; if it is less than zero,
the resultant force is directed to the anode. Thus, the motion of the positively charged ions of a metal to the anode
becomes possible as a result of the entrainment of the ions by conduction electrons. To roughly evaluate the quantities
Fi and vi in contact melting with electrotransfer we take: |Zi

∗ |  = 10, e0 = 1.6⋅10−19 C, D
~

 = 10−9 m2/sec, k =
1.4⋅10−23 J/K, T = 500 K, j = 5⋅105 A/m2,  and γ =  1.6⋅10−7 Ω−1⋅m−1. Then we obtain Fi C 5⋅10−20 N and
vi C 0.7⋅10−8 m/sec.

Thus, the effect of transfer in this case can be substantially higher than in the presence of a nonuniform mag-
netic field.

In the case of contact melting where the diffusion flows ID and the flows of the components due to electro-
transfer Ie coincide in direction and where these flows are opposing, we have the following: if the effective charges
e0ZA

∗  > 0 and e0ZB
∗  < 0, then in passage of the electric current from A to B the flows ID and Ie coincide for each com-

ponent and when the direction of the current is reverse these flows are opposing for both components.
Thus, in the case of contact melting with electrotransfer the conclusions drawn from formulas (16)–(18) hold

true.
In summary, we note that experimentally it is much more difficult to carry out the experiments on contact

melting in the stationary mode than in the nonstationary mode. This is associated with the creation of special con-
ditions of removal of the newly formed portions of a liquid from the contact zone. However, as has been indi-
cated above, to check the qualitative conclusions one can successfully use the instantaneous values of the kinematic
characteristics of contact melting in the nonstationary mode. Taking this into account, we can state that the con-
clusions drawn from formulas (16)–(18) are in agreement with the experimental results obtained in [13–16] for the
nonstationary process of contact melting with electrotransfer and for contact melting in a nonuniform magnetic
field.

NOTATION

D
~

, coefficient of interdiffusion; C, concentration; C2 and C3, liquidus concentrations; C0 and C5, concentra-
tions at a distance from the interphase boundary; δ, thickness of the liquid interlayer; v, average rate of ordered trans-
fer of the substance under the action of the external force; V1 and V2, partial rates of contact melting of the solid
phases 1 and 2 respectively; N1, N2, and N3, numbers of particles in unit volume of the solid phases 1 and 2 and of
the liquid phase 3 respectively; V1

0 and V2
0, partial rates of contact melting in the absence of the external force; ID,

diffusion flow; Iv, flow occurring due to the external force; Ie, flow of electrotransfer; ui, mobility of a diffusing par-
ticle; µi, ai, and γi, chemical potential, activity, and activity coefficient of the ith component respectively; Di and Di

∗ ,
partial coefficient of diffusion and self-diffusion coefficient of the ith component respectively; F, external force; B and
H, induction and strength of the magnetic field; λi and χi, effective magnetic moment and magnetic susceptibility of
the ith component respectively; NA, Avogadro number; e0, absolute value of the electron charge; e0Zi and e0Zi

∗ , self-
charge and effective charge of a diffusing ion; n, concentration of free electrons; l, mean free path of the electrons;
σi, cross sections of the scattering of electrons by a given ion; E, electric field strength; signs (+) and (−) correspond
to the opposing directions of the external force.
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